Love Thy Data
(or: Apps Considered Harmful)

Dr. Ora Lassila

Principal Technologist
Cloud Analytics Team
Nokia Location & Commerce

Elected Member
Advisory Board
World Wide Web Consortium (W3C)
Some speaker details

• current and past positions:
 − principal architect with Nokia’s “big data analytics” unit
 − elected member of W3C’s Advisory Board since 1998
 − research positions at Nokia Research, MIT, CMU, HUT
 − venture capitalist, entrepreneur, software engineer

• education:
 − Ph.D (D.Sc) in Computer Science, HUT

• some (perhaps dubious) achievements:
 − co-invented the Semantic Web; co-author of the highest cited article on the topic; co-editor of the original RDF specification
 − software for NASA’s Deep Space 1 (Asteroid Belt in 1998)
 − Grand Prize @ USENIX Intl. Obfuscated C Code Context, 1989
Some speaker details

• current and past positions:
 − principal architect with Nokia’s “big data analytics” unit
 − elected member of W3C’s Advisory Board since 1998
 − research positions at Nokia Research, MIT, CMU, HUT
 − venture capitalist, entrepreneur

• education:
 − Ph.D (D.Sc) in Computer Science, HUT

• some dubious achievements:
 − co-invented the Semantic Web; co-author of the highest cited article on the topic; co-editor of the original RDF specification
 − software for NASA’s Deep Space 1 (Asteroid Belt in 1998)
 − Grand Prize @ USENIX Intl. Obfuscated C Code Context, 1989
This is what I would like to talk about today

• first, let’s have to look at what is going wrong (with information systems development)

• Semantic Web as a possible solution to address some of the above problems

• a bigger picture of how we could acquire, store, process and use data
Part 1: The Problem
First, let’s define what an “app” is

• data + logic + presentation

• a way to package/deliver/deploy the three
 – in some way, this is an antiquated notion
 that mostly comes from the needs of
 developers/publishers (users don’t care)

• we see different kinds of apps, including
 1. perform a specific function
 (e.g., a “camera” app)
 2. present users with some specific data
 (e.g., the “NY Times” app)

• specifically with #2, one is left wondering,
 why not just use the Web…
Issues with data

• typically, data lives in a “silos” and has opaque semantics
 − proprietary data models (semantics)
 − proprietary data formats (syntax)

• this makes the data hard to
 − access (from outside the app)
 − reuse (by other systems)
 − integrate (with data from other sources)

• an app typically “owns” its data, locking users to this particular app

• access/reuse/integration, at best, are engineering endeavors
Issues with logic

- typically, logic is “embedded” in the app and has (at best) opaque semantics
- this makes it hard to
 - access the logic – associate data with this logic except through (and in the context of) the app
 - reuse the logic in some other system
Issues with presentation

• typically, presentation is “fixed”
 -(i.e., decided by developers of the app)

• this makes it hard to
 -flexibly change the presentation per desires
 and preferences of the user
 -reuse the presentation in some other context

• “packaging” content in a (native) app
 excludes the good the Web would give us
 -no linking, no bookmarking
 -no accessibility features (unless the platform
 provides those; cf. reuse of data/content)

• HTML5 to the rescue?
Random examples of bad (and good) apps

• **bad:** NY Times – no linking, bookmarking, text refers to links that are not there

• **bad:** Netflix – similar to the Web site, but offers fewer options in cross-linking, etc.

• **better:** Financial Times – app built using Web standards wins over native

• **better:** Amazon Kindle “cloud reader” – built using Web standards, avoids App Store royalties for in-app purchases

• **better:** Flipboard – allows users to select content via open data
Whether we are talking about data, logic or presentation, locking these in an un-reusable “silo” only further fragments our information space.
Perhaps this is in our future?

Whether we are talking about data, logic or presentation, locking these in an un-reusable “silo” only further fragments our information space.
Always focus on data

• apps and systems come and go, but data has longevity
• always assume that data
 – comes from multiple sources
 – has multiple “owners”
 – spans multiple application domains
• specifically, focus on things that make sharing possible:
 – open formats and models
 – “accessible” semantics
 – also: don’t forget data provenance
Data formats?

• data format (= syntax) is an important issue, but
 – all issues wrt. formats have already been solved
 → no need to reinvent or redefine things
 – once you decide on syntax, you should forget about it

• people seem to think that “format = model”, but this leads to all kinds of issues … also, there is a persistent belief that as long as you understand the syntax, you have “solved the problem” (unfortunately not so)

• people tend to be overly focused on syntax (big mistake)
 – (evidence: current public discussions on how to improve JSON focus on changing the syntax – seriously!)
Data models?

• modern ontological technologies allow the semantics of a domain to be captured in a model (for reuse)

• in many cases, an open (even standard) conceptual model exists for the domain you are interested in
 − but: you typically have to extend it for your own use cases

• checklist if you are defining models:
 − make them extensible, assume people will want to extend
 − assume these models are not used in isolation, but instead they need to interconnect with other models
What establishes (data) semantics?

1. relationship of data to (accessible & declarative) definitions of data types
2. relationship of data to some other data
3. some (procedural) software that “hard-wires” how to process certain kind of data

• all semantics is grounded in the above three
 – note that #1 is recursive
 – the less you have #3, the better
 (and yet, today, most of semantics is captured via #3)
Part 2: The Semantic Web
Characterizing the Semantic Web

• WWW, as conceived, is human-oriented
 – this is both good and bad
 – difficult to automate (particularly unforeseen situations)
 – to employ machines more, we need data

• Semantic Web aims at making it easier to use data in an automated fashion (with implications to interoperability)

• Semantic Web is an “interoperability technology”
 – contrary to many examples about “Web 2.0”, the Semantic Web aims at achieving many things “ad hoc”
 – shared (and accessible) semantics is the key to interoperability
 → Semantic Web aims at using ontologies to model the world
Serendipity defines the Semantic Web

Serendipity in...

interoperability: is it possible to interoperate with systems and services we knew nothing about at design time?

reuse: when information has accessible semantics, this is easier...

integration: can information from various independent sources be combined?
Understanding the Semantic Web vision

• Semantic Web is ultimately about how we want to build information systems, and how we want information technology to serve people

• key challenges:
 1. where does data come from – access to data
 2. how is data processed – the ability to flexibly handle unanticipated situations
 3. how to present data to users – matching the richness of data with the expressiveness of user interaction

• the vision should not be considered in isolation, but as part of a broader vision for information technology
Semantic Web and “culture”

• different domains (of discourse) are their own “cultures” and have languages of their own

• examples from scientific disciplines:
 – biology vs. economics
 – ecology vs. physiology vs. molecular biology
 – proteins: folding vs. expression vs. interactions

• scientific disciplines also use conceptual models (about the world) that are different from others’
 – e.g., different levels of abstraction

• but… “no domain is an island” – domains interconnect
 – museum artifacts → history → geography → travel → …
Semantic Web and “culture”

- Semantic Web was designed to
 - accommodate different points of view
 - be flexible about what it can express – not preferential towards any particular domain or application

- serendipity of combining information in new ways
 - we cannot anticipate all the possible ways in which information is used, combined
 - using Semantic Web formalisms lowers the threshold for “serendipitous reuse”

- a new approach to standardization
 - standardize how things are said, not what is said
Part 3: Future?
“Existential Crisis” of the Semantic Web...?

- Semantic Web was conceived as “integration and interoperability” technology
- it is all grown up: The main technical pieces are in place

BUT...

- what about our dream of being able to ontologically model the world?
“Existential Crisis” of the Semantic Web…?

• prescriptive approaches to the world are known to fail
 – rather, Semantic Web is very much intended to be descriptive

• “global ontology” a bad idea – the broader the scope, the weaker or more complex the resulting ontology

• this is not just a technical challenge…
Hierarchy of information scales (cf. mapping)

<table>
<thead>
<tr>
<th>1. Mapping scalar objects, units of measure, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g., UNIX date → ISO 8601 date</td>
</tr>
<tr>
<td>Mostly syntactic, yet often offered as “semantic transformations”</td>
</tr>
<tr>
<td>THIS IS NOT A PROBLEM!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Mapping structured objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g., ovi:Person → facebook:Person</td>
</tr>
<tr>
<td>Doable, particularly if semantics on both sides are already a good match, still this may lead to “subsetting”, making round-trips difficult</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Mapping entire application data models (or ontologies) onto other applications’ models</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g., Nokia Ovi Services → Facebook</td>
</tr>
<tr>
<td>Achieving bijective and transitive mappings much harder, also much of the semantics is embodied in applications’ “business logic”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Mapping entire cultural “contexts”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e.g., US → France → Finland</td>
</tr>
<tr>
<td></td>
<td>note: finland:Café ≠ france:Café</td>
</tr>
<tr>
<td></td>
<td>Is it even possible…? Very difficult, but perhaps not entirely hopeless [Lassila 2006]</td>
</tr>
</tbody>
</table>
“Value chain” for data

• Where does “semantic” data come from?

symbolic methods
- reasoning, logic

non-symbolic methods
- data mining
- machine learning

signal processing
“Value chain” for data – extended view

reusable data

structured sources

unstructured sources
“Value chain” for data – extended view

What’s important?

• multiple models & domains
 ⇒ mapping models & data
 ⇒ provenance
• integration (via reasoning)
 ⇒ identity
Conclusions, last words...

- current way of designing, building and delivering information technology to end users is **broken**
 - information is **isolated**, information space is **fragmented**

- Semantic Web is a set of technologies that can be used to address some of the problems
 - however, covering “a lot of ground” is difficult

- we should **focus on data**, understanding that various means to process is it come and go
 - make it possible to **share** data, and other people will come up with new ways of using your data

- **homework:** what about **business models** for all this?
Thank you!

• questions, comments?

• short rants: @gotsemantics
• long(er) rants: http://www.lassila.org/blog
• contact: ora.lassila@nokia.com

• thanks to: Ian Oliver,
 Mika Mannermaa,
 Mike Champion